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Abstract

In Monte-Carlo photon-tracing methods energy-carrying particles are traced in an environment to generate hit points

on object surfaces for simulating global illumination. The surface illumination can be reconstructed from particle hit

points by solving a density estimation problem using an orthogonal series. The appropriate number of terms of an

orthogonal series used for approximating surface illumination depends on the numbers of hit points (i.e. the number of

samples) as well as illumination discontinuity (i.e. shadow boundaries) on a surface. Existing photon-tracing methods

based on orthogonal series density estimation use a pre-specified or fixed number m of terms of an orthogonal series;

this results in undesirable visual artifacts, i.e. either near-constant shading across a surface which conceals the true

illumination variation when m is very small or excessive illumination oscillation when m is very large. On the other

hand, interactive user specification of the number of terms for different surface patches is inefficient and inaccurate, and

thus is not a practical solution. In this paper an algorithm is presented for automatically determining on the fly the

optimal number of terms to be used in an orthogonal series in order to reconstruct surface illumination from surface hit

points. When the optimal number of terms required is too high due to illumination discontinuity of a surface, a heuristic

scheme is used to subdivide the surface along the discontinuity boundary into some smaller patches, called sub-patches,

so as to allow a smaller number of terms in the orthogonal series to optimally represent illumination on these sub-

patches. Experimental results are presented to show that the new method improves upon other existing orthogonal

series-based density estimation methods used for global illumination in both running time and memory requirements.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods for global illumination computation are

categorized into two classes: view-dependent methods

and view-independent methods [1]. In a view-dependent

method, such as the classical ray tracing, a viewpoint is
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specified by the user and lighting information depending

on the viewpoint is computed to synthesize an image. In

a view-independent method, such as the classical radio-

sity, only the lighting information independent of the

viewpoint is computed and stored for subsequent image

rendering. The lighting information independent of the

viewpoint includes all the light energy interactions

between surfaces. Multi-pass methods combining both

view-independent and view-dependent light information

are the state of the art in global illumination computation.
d.
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Although view-independent methods do not provide a

complete global illumination solution, they increase the

realism of three-dimensional (3D) virtual environments

significantly.

Monte-Carlo methods based on particle tracing is an

approach towards computing global illumination that is

currently under active research [2–17]. There are two

stages in a photon-tracing global illumination method: a

light transport stage and an illumination reconstruction

stage. In the light transport stage, energy-carrying

particles are emitted from light sources, traced through

the environment, and reflected from surfaces until they

are absorbed probabilistically. In the illumination

reconstruction stage, illumination on a surface is

estimated from the distribution of all particle-hit points

on the surface. The process is illustrated in Fig. 1.

Walter et al. [5] formulated the two-stage photon-

tracing global illumination method as a density estima-

tion framework, based on the fact that illumination

reconstruction from particle hits is an instance of the

well-known density estimation problem in statistics.

Several techniques can be found in the statistics

literature for solving the density estimation problem

[18], some of which have already been applied to solve

problems in computer graphics; these include the

histogram method [4,19], the kernel method [5,20], and

the orthogonal series estimator [3].

The success of a density estimation framework

depends on the performance of the density estimation

method used in the framework. In this paper we study

the application of the orthogonal series estimator in a

photon-tracing global illumination method. A critical

parameter in an orthogonal series estimator is the

number m of terms in a series used to best approximate

illumination on a surface patch; this number m should

be different for different surfaces, since it depends on the

number of samples (i.e. hit points) on the surface as well

as illumination discontinuity along shadow boundaries.

However, existing density estimation frameworks based

on an orthogonal series estimator use a fixed m for all

surface patches in a scene, thus causing either an overly
Fig. 1. The photon-tracing process. Left: particles are traced throu

estimated illumination of the floor.
flat shading that conceals the true illumination variation

when m is relatively small or excessive illumination

oscillation when m is relatively large. Moreover, as will

be seen later in this paper, the typical values of m vary in

a large range. Hence, it is inefficient, and inaccurate, for

the user to specify appropriate values of m for different

surfaces.

We present a new adaptive orthogonal series estima-

tor that is integrated with a surface subdivision scheme.

Invoking established results from statistics, we deter-

mine automatically the optimal number of terms for

illumination approximation on a surface patch. When

this optimal number of terms becomes too large due to

significant illumination discontinuity, we subdivide the

surface patch into several smaller surface patches, called

sub-patches, so that the number of terms that should be

used on each sub-patch can be kept small, since high-

degree polynomials not only take extra time and

memory to process but also cause undesirable illumina-

tion oscillations. Our experimental results show that this

new density estimator outperforms other existing

photon-tracing global illumination methods based on

an orthogonal series density estimator.

The remainder of this paper is organized as follows: in

Section 2 we review some typical methods for solving the

density estimation problem in global illumination

computation. In Section 3 we consider determining the

optimal number of terms used in an estimation function

for illumination representation. In Section 4 we present

the adaptive nonuniform subdivision scheme. The

implementation of our method, experimental results,

and comparison with other methods are given in

Section 5. The conclusion is drawn in Section 6.
2. Density estimation and photon-tracing

The density estimation problem can be stated as

follows: given n independent samples fX 1; . . . ;X ng

drawn from an unknown probability density function

f ðxÞ, derive a density function f̂ ðxÞ to approximate f ðxÞ.
gh the scene. Middle: particle-hit points on the floor. Right:
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It is well known [19,21] that the illumination reconstruc-

tion process in a photon-tracing method is a density

estimation problem—the particles-hit points are the

sample points fX ig, and the irradiance is a scaled

probability density function f ðxÞ.

Note that all formulations in this paper assume a

single wavelength. In our implementation three color

components (R,G,B) are traced and computed indepen-

dently. One simple extension to more color bands is to

trace photons for each color band independently.

There are three commonly used techniques for solving

the density estimation problem [18], the histogram

method, the kernel method, and the orthogonal series

estimator, all of which have been used in computer

graphics to solve the photon-tracing global illumination

problem. Below we give a brief review of these

techniques. We use the one-dimensional case to illustrate

the idea, but note that it is the two-dimensional (2D)

case that is used in global illumination applications.
�
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Histogram: Suppose that the domain ½a; b� of a

variable x is divided into sub-intervals ½aþmh; aþ
ðmþ 1Þh�, each of which is called a bin with width h.

Suppose that there are n samples in ½a; b� with a

distribution f ðxÞ. Then the histogram estimator gives

the estimation function of f ðxÞ by

f̂ ðxÞ ¼
1

nh
� ðthe number of samples

in the same bin of xÞ,

which is a piecewise constant function. Fig. 2 shows

an example of the histogram estimator.

The ‘‘meshing’’ technique [2,22,23] in computer

graphics is a variant of the histogram method, in

which each surface is normally subdivided into some

patches prior to the particle-tracing stage. The

illumination of each patch is a constant proportional

to the number of particle hits on the patch. Since the
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. 2. The histogram estimator for the samples {2, 2.3, 2.5, 3,

.3, 5.8, 6.6, 8, 8.1}.
resulting estimation of illumination is a piecewise

constant function over a collection of patches

representing a smooth surface, a bi-linear interpolate

method, such as Gouraud shading, is usually used to

produce smooth illumination on a surface.

One problem with the ‘‘meshing’’ technique is that it

is unknown beforehand as to how finely a surface

should be subdivided; on the one hand, a very fine

subdivision may cause some patches to not capture

many particles sufficiently, resulting in noise and

artifacts in the estimated illumination, and on the

other hand, a very coarse subdivision may cause the

estimated illumination to appear overly flat, thus

concealing the details of illumination variation. This

problem can be addressed by the ‘‘adaptive meshing’’

technique [4] which attempts to divide a surface

adaptively on the fly during the particle-tracing stage,

based on the current number of particles captured

by the patch. However, as constant illumination is

assumed, it still requires a fine surface subdivision, or

equivalently, a large number of small surface patches,

to represent a smoothly varying illumination or

illumination discontinuity. This means slow conver-

gence and excessive space consumption for attaining

a high accuracy of illumination computation.
�
 Kernel estimator: Let KðxÞ be a kernel function

satisfying the condition
R

KðxÞdx ¼ 1. A kernel

function is normally unimodal, i.e. having one peak

over its support. A kernel estimator gives the

approximate function by

f̂ ðxÞ ¼
1

nh
�
Xn

i¼1

K
x� X i

h

� �
,

where h, called the kernel width, is the smoothing

parameter, which controls the smoothness of estima-

tion. Fig. 3 shows examples of a kernel estimator

with different kernel widths. The kernel function used

here is the Epanechnikov kernel [5] defined by

KðxÞ ¼
3
4
ð1� jxj2Þ if jxjp1;

0 otherwise:

(

From Fig. 3 we see that the choice of h affects the

smoothness of the resulting estimation; however, it is

not a trivial task to choose a suitable h [21]. The

kernel width should be narrow enough to capture the

details in density distribution, and at the same time, it

should be wide enough to avoid spurious fine

structures. A shortcoming of a kernel-based method

is that all samples need to be stored in order to

evaluate f̂ ðxÞ. Hence the storage requirement be-

comes prohibitive for a large sample size, such as in

the photon-tracing global illumination computation.

Walter et al. [5] propose a photon-tracing algorithm

that uses a kernel estimator to reconstruct surface

illumination. In this algorithm the kernel width is
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Fig. 3. Kernel estimators with different kernel width.
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selected using a heuristic method which requires a

large secondary storage to store all particle-hit

points.
�
 Orthogonal series estimator: Let ffigiX0 be a complete

set of orthonormal basis functions on an interval I.

Suppose that a density function f ðxÞ is represented by

f ðxÞ ¼
X1
i¼0

aifiðxÞ; x 2 I ,

where ai ¼
R

I
f ðxÞfiðxÞdx. An orthogonal estimator

is then given by

f̂ mðxÞ ¼
Xm

i¼0

âifiðxÞ (1)

for some integer mX0, where âi is an estimation of ai.

Since the samples fX ig are drawn from the prob-

ability density function f ðxÞ,

ai ¼

Z
I

f ðxÞfiðxÞdx

¼ E½fiðX Þ�

�
1

n

Xn

j¼1

fiðX jÞ

� âi, ð2Þ

where X is a random variable following the prob-

ability density function f ðxÞ. Note that âi is an
unbiased estimator of ai [18]. In general, m in Eq. (1)

is much smaller than the sample size n; hence, instead

of storing all particle-hit points, one only needs to

update f̂ mðxÞ according to Eq. (2) with the arrival of

each new particle on a surface and to store a small

number of coefficients fâi : i ¼ 0; . . . ;mg to represent

f̂ mðxÞ.

Clearly, the optimal value of m, i.e. the number of

terms in Eq. (1), depends on the number of sample

points and the variation of f ðxÞ. It is a tricky task to

pre-specify appropriate values of m for different

surfaces in a complex scene, since the number of hit

points and illumination discontinuity on a surface

patch are unknown at the beginning and they only

become available gradually with the progress of the

particle-tracing process.

Feda [3] and Tobler et al. [4] give two photon-tracing

algorithms based on the orthogonal series estimator.

In both methods the user needs to specify the

parameter m for each surface. Our investigation

shows, as will be seen in detail shortly, that this

treatment is tedious and prone to inaccuracy,

and is thus not a practical solution for a complex

scenario.

2.1. An overview of our method

We propose a new photon-tracing global illumination

method that combines two ideas to make the orthogonal

series estimator practical for photon-tracing applica-

tions. First, our method automatically determines for

each surface the appropriate number of terms that

should be used in the orthogonal series. Second, when

illumination discontinuity entails a large number of

terms, we subdivide the surface adaptively to better

capture illumination discontinuity. Hence, the method

combines the advantage of an orthogonal series

estimator for modeling smooth illumination variation

and that of adaptive subdivision for modeling illumina-

tion discontinuity.

The integration of an orthogonal series estimator and

surface subdivision has been motivated by the work of

Tobler et al. [4]. However, there are two major

differences between our method and the method of

Tobler et al. [4]: (1) the optimal number of terms used in

an orthogonal series for each surface patch is deter-

mined automatically in our method, while this number is

specified by the user in the method of Tobler et al; and

(2) using image-processing techniques and orthogonal

series over quadrilateral and triangular domains, we

adaptively subdivide a surface patch along a direction

that best fits illumination discontinuity, while only

uniform subdivision of rectangular patches is considered

by Tobler et al.

This paper reports on an extension to and improve-

ments over our previous work presented at Pacific
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Graphic 2000 Conference [24] in terms of the following

aspects:
�
 Experimental evidence is now provided to show the

need for using different number of orthogonal

polynomials terms for different surfaces in order to

achieve optimal illumination reconstruction. This

evidence was absent in [24].
�
 Non-uniform surface subdivision is now incorpo-

rated into our method, and for this purpose,

computation using orthogonal polynomials on the

triangular domain is now studied. In comparison,

our preliminary work in [24] considers orthogonal

polynomials on rectangular domains and thus sup-

ports only uniform subdivision.
�
 A novel application of adaptive-width low-pass filters

is proposed in the present paper for removing

discontinuity between reconstructed illumination

approximating functions on adjacent surface patches.

This improves significantly the visual quality of

output images, as compared with the treatment based

on polynomial interpolation in [24].

Since our method falls into the category of a view-

independent global illumination algorithm, this method

can deal with a static scenario with camera movement.

Moreover, the method can only deal with diffuse

surfaces, because in the density estimation stage we only

consider the particle-hit positions without considering

the incoming direction of the particles.
3. Optimal number of terms for best approximation

In this section we discuss the motivation and

technique for determining the optimal number of terms

in an orthogonal series for approximating surface

illumination.

3.1. Error of an orthogonal series estimator

We first consider the error of an orthogonal series

estimator. Throughout this paper we use a bivariate

orthogonal series over a quadrilateral domain that is

derived from the Legendre polynomials and an ortho-

gonal series over a triangular domain that is derived

from the Jacobi polynomials (see the description of these

two orthogonal series in Appendices A1 and A2,

respectively). However, the ideas presented apply to

other orthogonal series as well. There are different

orthogonal series with different approximation proper-

ties. The comparison of these different orthogonal series

regarding their applications to solving the density

estimation problem is beyond the scope of this paper.

The error of an estimation based on a particular set of

samples fX 1; . . . ;X ng is measured by the integrated-
square error (ISE) [18] defined by

ISE ¼

Z
I

½f̂ ðxÞ � f ðxÞ�2 dx.

The average error over all possible sample sets is

measured by the mean-integrated-square error (MISE)

defined by

MISE ¼ E

Z
I

½f̂ ðxÞ � f ðxÞ�2 dx

� �
. (3)

Since an orthogonal series estimator is used, we

substitute the expression of f̂ mðxÞ in Eq. (1) for f̂ ðxÞ

into Eq. (3) to obtain

MISE ¼ E

Z
I

Xm

i¼0

ðâi � aiÞfiðxÞ �
X1

i¼mþ1

aifiðxÞ

" #2
dx

8<
:

9=
;

¼ E
Xm

i¼0

ðâi � aiÞ
2
þ
X1

i¼mþ1

a2i

" #

¼
Xm

i¼0

VarðâiÞ þ
X1

i¼mþ1

a2i , ð4Þ

where VarðâiÞ is the variance of âi, and âi is an unbiased

estimator of ai.

Eq. (4) illustrates the well-known tradeoff between

variance and bias in the density estimation problem [18].

The first term is the error introduced by the variance of

the estimator due to the error in approximating ai by âi,

which is in turn caused by an insufficient number

of samples, and the second term is the bias of the

estimator due to truncation of the infinite series

f ðxÞ ¼
P1

i¼0 aifiðxÞ.

Fig. 4 shows the consequences when the values of m

are not set properly. Given a fixed sample set, in the left

image all surfaces use only the constant term in the

orthogonal series, i.e. m ¼ 0, leading to flat shading.

This occurs because truncating off all the terms except

for the constant one of the infinite series introduces a

large bias in the estimator. In the middle image all

surfaces use m ¼ 45 terms in the series, which are too

many for those surfaces with few particle hits; as a

consequence, the variance in the coefficients âi causes

excessive illumination oscillation. In the right image,

appropriately chosen values of m are used for different

surfaces—relatively small values of m are used for those

surfaces with few particle hits or smooth illumination,

and relatively large values of m for other surfaces.

(See Fig. 5 later in this section for the distribution of m.)

The resulting image is much improved as compared with

the other two.

We now return to the analysis of the error measured

by (4). Clearly, VarðâiÞ ! 0 when n approaches 1, and

in this case a larger m leads to a smaller error, which isP1
i¼mþ1a2i . However, since n is finite, the variance of âi

may contribute significantly to the total error, especially
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Fig. 4. Different numbers ðmÞ of terms to use: fixed vs adaptive. Left: all surfaces use m ¼ 0, and the illumination appears flat. Middle:

all surfaces use m ¼ 45, and illumination oscillation occurs on some surfaces. Right: different values of m are used for different

surfaces, producing a better image.
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when n is relatively small. Therefore, given a finite

sample set fX 1; . . . ;X ng, we should select an appropriate

value of m to attain a balance between the first term and

the second term of Eq. (4) and, as a result, to minimize

MISE. Substituting (2) into (4), we obtain

MISE �
1

n� 1

Xm

i¼0

½2d̂ i � ðnþ 1Þâ2i � þ
X1
i¼0

a2i , (5)

where d̂ i ¼
1
n

Pn
j¼1f

2
i ðX jÞ. The details of deriving (5) can

be found in [25,26]. So we need to choose a number m

which minimizes the MISE, or equivalently, minimizes

the function

JðmÞ ¼
1

n� 1

Xm

i¼0

½2d̂ i � ðnþ 1Þâ2i �,

since the second term on the right-hand side of Eq. (5) is

independent of m.

3.2. Characteristics of JðmÞ

In this subsection we use several scene setups to study

the characteristics of JðmÞ and develop a strategy for

determining the optimal value of m. Consider the five

scenes shown in Fig. 5. In the first three scenes the

receiving surfaces contain a smooth illumination, while

in the last two scenes the receiving surfaces contain

illumination discontinuity. In the left column of Fig. 6

the functions JðmÞ are plotted against m, where m is in

the range ½0; . . . ; 60�, for the receiving surfaces in the five

scenes, with three cases of the surfaces capturing 400,

1600, and 6400 particles, respectively, for each setup.

The right column of Fig. 6 shows the computed

coefficients âi plotted against i.

The following observations can be made from the

charts in Fig. 6:
�
 The patterns of JðmÞ fall into two categories: (i) For

the first three scenes in which the irradiance is

smooth, an optimal m, denoted by m�, exists such

that it minimizes JðmÞ. In this case JðmÞ increases or
remains unchanged for all mXm�. (ii) For the last

two scenes where there is strong illumination

discontinuity, there is no such ‘‘optimal’’ m, and in

this case JðmÞ decreases as m increases. Therefore, to

reduce the error in the latter case one would have to

use a very large value of m, i.e. to include many terms

in the orthogonal series estimator, but this would be

inefficient and may even introduce more errors due to

the inherent oscillation of a high-degree polynomial

when the number of surface hit point is relatively

small; large local oscillations may not be revealed by

MISE, which is an L2-type error measurement. This

observation suggests that a surface subdivision

scheme should be used to better capture illumination

discontinuity.
�
 The value of m� is not stable for smooth irradiances

when the number of particle hits, denoted by n, is

small (e.g. n ¼ 400), i.e. m� may shift to a larger value

when the number of particles captured increases.

However, m� becomes stable when n is relatively

large, e.g. for n ¼ 1600 or n ¼ 6400. So we suppose

that nX2000 is sufficiently large for obtaining a

stable m�. This observation suggests a ‘‘check point’’

in our algorithm, i.e. when the algorithm should

verify and determine whether a surface has illumina-

tion discontinuity or not; this will be discussed in

more detail later.
�
 The function JðmÞ is not necessarily monotonic; it

may have multiple local minima in some cases. This is

illustrated by the first scene in Fig. 5 and its charts in

Fig. 6, when n ¼ 400. Since the illumination is

symmetric on the receiver, there is no linear variation

over the entire surface; consequently, the coefficients

for the linear terms (with i ¼ 1; 2) should be zero, and

thus including these terms in the series should not

cause any problem. However, as variance exists, the

computed coefficients â1 and â2 are non-zero, so

including these two linear terms may increase

the error. Including further terms in the series (e.g.

the three quadratic terms with i ¼ 3; 4; 5) will then
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reduce the error. This explains why the function JðmÞ

may have local minima which are not globally

minimal.
We have also examined the function JðmÞ for two

other more complex scenes. One is the scene of a Cornell
box with one light source and 18 surfaces, and the other

is an office scene with 4 light sources and more than 300

surfaces, as shown in Fig. 7. We observe that JðmÞ

exhibits the same behavior in these two scenes as in the

simple scenes in Fig. 5. Moreover, for all of the scenes

we experimented with, the values of m� for most surfaces

fall in the range ½0; . . . ; 30�, except for a few surfaces with

strong illumination discontinuity, which require m� to

be larger than 30. Furthermore, within the range

½0; . . . ; 30�, the values of m� are distributed in a rather

random manner, and, in fact, are strongly dependent on

the smoothness of illumination. This implies that it

would be an extremely difficult and tedious task for the

user to specify even a nearly optimal value of m for each

surface in a small scene, let alone a complex scene. These

observations provide the motivation, as well as basis, for

devising an automatic method for selecting the best

value of m for each surface.

3.3. Automatic determination of m

Since JðmÞ may have multiple local minima, to avoid

being trapped at a local minimum, one cannot simply

increase m incrementally until Jðmþ 1Þ4JðmÞ. Rather,

the following strategy is adopted. Based on our extensive

testing, we set M ¼ 30 to be the upper bound on the

number of terms that will be used in the orthogonal

series estimator for any surface. M ¼ 30 is appropriate

in the sense that it is large enough to allow enough terms

for modeling smooth illumination accurately and, at the

same time, not too large to compromise computational

efficiency; after all, if the optimal value of m exceeds

M ¼ 30, it is normally the case where there is strong

illumination discontinuity, and in this case it should be

more efficient to subdivide the surface than using

excessively many terms in the estimator.

With M fixed, we choose a value m� that minimizes

JðmÞ for all mpM. Note that the value of m� of a

surface depends on the number of particles captured by

the surface, especially when the sample size is small.

However, regardless of the sample size, our algorithm

always yields the most appropriate m� for each surface,

subject to m�p30.

One remark is in order about calculating the function

JðmÞ. Since JðmÞ involves the particle-hit points, it
Fig. 5. Test scenes for investigating the behavior of JðmÞ. The

left column shows the scene setup, and the right column shows

illumination on receivers. From top to bottom: one light source

without blocking, three light sources without blocking, one

light source placed perpendicular to the receiver, one light

source placed perpendicular to the receiver and moved inward,

and one light source with a triangle-shaped obstacle. Each light

source is represented by a rectangle.
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Fig. 6. The behavior of JðmÞ for the five scenes shown in Fig. 5. The left column shows JðmÞ against m, and the right column shows the

coefficients âi against i.
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Fig. 8. Results without surface subdivision. From left to right: front view, top view, analytical solution, and approximating function

for reference. The estimator uses m ¼ 45 terms.
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cannot be pre-computed. However, even though d̂ i and

âi need to be updated on every particle hit, JðmÞ does

not—we compute JðmÞ only when we wish to find out

the m� for a surface, either before the final rendering (i.e.

after all particles have been traced) or for deciding

whether a surface should be subdivided or not. This is

described in detail in the next section.
4. Adaptive surface subdivision

Simply increasing the number of terms in the

estimation function would not produce a good approx-

imation of illumination discontinuity on a surface,

because of the inherent oscillation of a high-degree

polynomial. Fig. 8 shows two simple scenes to illustrate
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Fig. 9. The result of the new estimator with surface subdivision

added.
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this difficulty. Even though a large number of terms are

used, the polynomial still fails to produce a good

approximation of illumination for the two scenes.

Moreover, the visual artifact is even worse in the region

with a low gradient, due to oscillations inherent to high-

order terms.

A natural solution to the above problem is to

subdivide a surface patch with a high illumination

gradient into small sub-patches so that lower degree

polynomials can be used to better approximate the

illumination distribution on these sub-patches. In this

section we will address the following issues with this

subdivision scheme: (1) detection of surface patches

with high illumination gradients; (2) non-uniform

subdivision of such surfaces along the edge of an

illumination gradient; and (3) rendering with recon-

structed irradiance.

4.1. Detection of illumination discontinuity

Since a surface patch with a high illumination

gradient normally entails a large number of terms in

an orthogonal series for illumination approximation, we

detect such surfaces by verifying the value m� it requires,

i.e. if m�430. Specifically, during the particle-tracing

stage, we compute the optimal m� for the surface after it

has captured N particles. If this m� reaches a pre-defined

value M, say 30, then the surface needs to be subdivided.

The value of N can be chosen within the range from

2000 to 5000, which, as we have observed, ensures a

sufficient number of particle hits to yield a reliable

estimation of m�. Fig. 9 shows the results with surface

subdivision for the same two scenes as in Fig. 8. Note

that a uniform subdivision is used in these examples for

simplicity of discussion, while our general scheme allows

a non-uniform subdivision as will be introduced below.

4.2. Non-uniform surface subdivision

Both uniform and non-uniform surface subdivisions

are widely applied in computer graphics. Uniform

subdivision means that a surface element is subdivided

in a regular manner, such as dividing a rectangle into

four smaller ones of the same size that have the same

aspect ratio as the original rectangle. By non-uniform

subdivision we mean here cutting along a straight line to

divide a quadrilateral or a triangle into some quad-

rilaterals or triangles. Hence, uniform subdivision is a

special case of repeated non-uniform subdivision.

Although non-uniform subdivision allows the sub-

division boundary to better fit the boundary of

illumination discontinuity than uniform subdivision

does, and is thus more efficient in terms of both time

and memory, only a uniform subdivision has been used

in adaptive meshing for Monte-Carlo photon-tracing

algorithms, such as in [4]. This is because most adaptive
meshing methods for photon-tracing use the so-called

preview level technique to decide whether a surface

should be subdivided. More specifically, with the preview

level technique, a surface patch at the current level is

subdivided into a finer preview level consisting of several

sub-patches. Then the sub-patches at the preview level

are used to keep track of particle hits. After a sufficient

number of particles have been captured, the respective

numbers of particles captured by the sibling sub-patches

at the preview level are compared to decide whether the

parent patch at the current level should be subdivided; if

yes, the sub-patches at the preview level become surface

patches at the next level. Since a surface at the current

level is subdivided into the preview level before

illumination estimation takes place, no information

about illumination discontinuity is available to help

decide the best way of subdivision. As a consequence, it

is only natural for these methods to subdivide surfaces

uniformly.

In contrast, non-uniform subdivision is used in our

method. When a surface patch is detected to contain

illumination discontinuity, we subdivide the surface

along a line that fits the boundary of the illumination

discontinuity. There are different ways of finding the

boundary of illumination discontinuity. One may

compute the derivatives of the estimated illumination

function derived from the sample points using a similar

formulation of Eqs. (1) and (2). For example, the second

derivative of an estimation function can be estimated by

f̂
00

kðxÞ ¼
Xk

i¼0

b̂ifiðxÞ; for some integer kX0, (6)
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Fig. 11. Non-uniform surface subdivision. The first image on

the first row is generated using uniform subdivision, and the

first image on the second row is generated using non-uniform

subdivision. Note that, with fewer subsurfaces, non-uniform

subdivision produces better results than uniform subdivision

does.
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where

b̂i ¼
1

n

Xn

j¼1

f00i ðX jÞ. (7)

Details of this derivation can be found in [27]. A

problem with this approach is that extra memory is

needed to store the coefficients fb̂ig for each surface;

moreover, the running time would also increase since

more computation is needed for every particle hit.

We use the following alternative in our implementa-

tion. The illumination estimation on a surface patch is

first treated as a 2D image and then sharp illumination

changes are located with a standard edge-detector based

on the zero-crossing property of Laplacian filtering [28].

Specifically, when a surface needs to be subdivided, the

estimated illumination of the surface is rendered as a

low-resolution image (usually 256� 256 is sufficient).

Then the image is convolved with the Laplacian of a 2D

Gaussian function in the form

Gðx; yÞ ¼ exp �
x2 þ y2

2s2

� �
, (8)

where s is the standard deviation of the Gaussian

function. Then the zero-crossing of the convolved image

indicates the edge where there is a high-illumination

gradient. Finally, the Hough transform [28] is used to

find a straight line that best fits the edge. (Hough

transform is commonly used in image analysis to fit a

line to a set of nearly collinear points.) This process is

illustrated in Fig. 10.

Although we use the zero-crossing technique, we

believe that any other edge-detection technique should

be equally applicable. No matter which particular edge

detector is used, edge detection is not, in general, a

very efficient procedure. However, in our method

edge detection is performed only when necessary,

i.e. when a surface is detected to contain a high-

illumination gradient, a condition indicated by m�430.

Therefore edge detection is not triggered for smoothly
Fig. 10. The zero-crossing method for edge detection: (left) illumina

illumination before subdivision; (right) the white curves indicate zero

subdivision line generated by our algorithm.
illuminated surfaces, which are normally the majority of

all surfaces.

Fig. 11 shows the results of the non-uniform subdivi-

sion scheme. Note that in order to have a regular

functional domain on each subsurface, the resulting

subsurfaces are triangulated after each subdivision. We

see in these images that the non-uniform surface

subdivision scheme cuts the surfaces at a location closer

to illumination changes than uniform subdivision does;

hence, it produces a better image quality than the latter.
tion on a surface by an analytical solution; (middle) estimated

-crossings of the convolved image, and the red line represents a
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4.3. Illumination composition and rendering

Upon completion of the particle-tracing stage, we

need to compose the illumination estimations at all

subdivision levels to produce the final illumination.

When a parent patch is subdivided, each of its sub-

surfaces will have its own density estimation function,

and subsequent particles hits on the surface will be

captured by the sub-surface. Note that the coarse

illumination estimation of the parent patch must be

retained, because it accounts for the contribution of the

energy transported by particles before surface subdivi-

sion; this coarse estimation function will be super-

imposed to its sub-patches’ illumination estimations

before rendering the final image.

Since illumination estimations of adjacent sub-patches

are approximated by different functions which may not

agree with each other along their shared boundaries, the

image rendered with the composed illumination directly

without any processing would contain discernible

discontinuities along subdivision boundaries. To miti-

gate this problem, we propose a solution based on a low-

pass image filter. We first render the estimated illumina-

tion of all sibling sub-patches to form an image of their

parent patch. Then we apply a 2D low-pass image filter

[28] to smooth out the discontinuity across subdivision
Fig. 13. Adaptive width low-pass filtering. From left to right: (1) a r

and filter widths to be used, the darker color being for a larger filter wid

Fig. 12. The Sobel masks. (left) The horizontal mask and

(right) the vertical mask.
boundaries. Since we only wish to remove the visual

artifacts along the subdivision boundaries without

affecting the estimated illumination in other continuous

regions, we use a filter with adaptive width. Ideally, the

filter width should be large near discontinuity across

subdivision boundaries, and should taper down to zero

toward the interior of a sub-patch.

However, when a non-uniform surface subdivision is

applied, the subdivision boundaries on a surface form an

irregular pattern. Moreover, if we look at the illumina-

tion across a subdivision boundary, there exist both

smooth illuminations and discontinuities along the same

boundary. These features make it hard to decide the

filter width by merely considering the location of the

subdivision boundaries.

Our algorithm chooses the filter width directly from

the image before smoothing. First, we find the illumina-

tion gradients of each pixel in the image by applying a

gradient mask, such as the Sobel masks shown in

Fig. 12. Then for each pixel the low-pass filter width will

be chosen depending on the illumination gradient at that

pixel: a large filter width will be used if the gradient is

large; otherwise, a small filter width will be used.

Note that this method does not consider the location

of surface subdivision boundaries. We only consider the

illumination gradients of the surface. This may lead to

one problem: the illumination will be smoothed out in

some regions away from subdivision boundaries. How-

ever, as continuous polynomials are used as the basis

functions, the illumination gradients in an interior

region will be much smoother than the discontinuities

across a subdivision boundary. There artifacts are

generally minimal and not noticeable, and satisfactory

results have been obtained with this method in our

experiment.

Fig. 13 shows this rendering process. The image on

the left shows the illumination of a surface without

interpolation or smoothing, in which we can clearly see

the illumination discontinuity due to surface subdivi-

sion. The illumination gradient of the first image is

shown in the second image, where the darker color
endered image without interpolation; (2) illumination gradients

th; (3) the final rendered image after adaptive low-pass filtering.
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Fig. 14. Final rendered images. From left to right: FOSE, AM-C, AM-H, NEW. From top to bottom: 103, 104, 105, 106, and 107

particles are traced.
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indicates a higher illumination gradient, and therefore a

larger filter width. The rightmost image is the final

rendered image after low-pass filtering is applied.

5. Implementation and results

In this section we present experimental results on the

new photon-tracing global illumination method we have
proposed. Since our method is a combination of the

orthogonal series estimator and the adaptive meshing

approach, the following four different methods have

been implemented for comparison in terms of running

time, memory requirement, and L2 error (ISE).
(1)
 FOSE: The orthogonal series estimator with a

user-defined m, i.e. the number of terms in the
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illumination estimation function, and without sur-

face subdivision.
(2)
 AM-C: The adaptive meshing method of Tobler

et al. [4] with constant illumination.
(3)
1.2e-05

1.4e-05

or

AM-C
AM-H
FOSE
AM-H: Same as (2), but with a higher order

estimation function for each surface. The number

of terms used, i.e. m, is defined by the user (see

below).

1e-05

 fl
o NEW
(4)
 NEW: Our new method.
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Fig. 16. The L2 error of the methods.
These four methods are applied to the scene of a

Cornell box. Two surface patches were selected for

study—the floor, which has a large illumination varia-

tion, and the red wall on the right, which has a smooth

illumination variation. To accommodate for their

difference in illumination smoothness, 45 terms were

used for the floor and 15 terms for the red wall in both

AM-H and FOSE. For error measurement, the illumi-

nation computed with the four methods was compared

against a reference solution which was generated by

shooting 108 particles in the scene. A texture of size

200� 200 was used to capture particle hits on each

surface (Figs. 14, 15).

The results are shown in Fig. 16 and Fig. 17. Running

time, memory used, and L2 error (ISE) of the two

surfaces are plotted against the number of particles

traced. Also, Fig. 14 shows a sequence of images

generated by the four methods for the Cornel box scene

with an increasing number of particles traced.

The statistics and images lead to the following

observations:
 2500
AM-C
AM-H
�
 2000

c)

FOSE
NEW
Error vs. the number of particles: FOSE gives the

largest error. The error is bounded from below and
15. A complex scene rendered by the new method.

ifacts on the chair show a shortcoming of the photon-

ing global illumination method. F
not improved by increasing the number of particle

hits. AM-C and AM-H, i.e., the two adaptive

meshing methods, produce smaller errors, thanks to
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ig. 17. CPU time and memory used by different methods.
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the use of surface subdivision. But AM-C uses

excessive memory to store the mesh structure in

order to achieve this small error. Meanwhile,

although the AM-H method avoids this storage

problem, this method is impractical for a complex

scene since the user would have to specify a suitable

m for each surface, which is a very difficult task as

explained earlier in Section 3. Finally, the error

produced by our method is the smallest among the

four methods, provided that reasonably many

particles are traced, e.g. greater than 10; 000.
More importantly, our method does not require

the user to specify m�, the optimal number of terms

in the illumination estimation function for each

surface.
 r
e
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Fig. 18. L2 error against running time.
Running time vs. the number of particles: as shown in

Fig. 17, AM-H takes the longest time to trace the

same number of particles, because the method has to

evaluate a high-order irradiance at both the preview

level and the current level for every particle hit. Our

new method takes a longer time than AM-C or FOSE

because it has to evaluate the function JðmÞ for all

mpM, in order to obtain a more accurate illumina-

tion estimation. The timing statistics were obtained

on a PC with a P4 3.0GHz processor and 1GB main

memory.
�
 Running time vs. error: Fig. 18 plots the L2 error

against the running time used in the four methods. It

shows that, given the same running time, the new

method attains the smallest error among the four

methods. In other words, to achieve the same error

level, our method requires to shoot fewer particles

and runs faster.

Fig. 15 shows a synthesized image of a computer

laboratory generated by the new method. The model

contains 16; 000 triangles. In total 107 particles were shot

from the light sources and traced until absorbed

probabilistically, up to a maximum of 10 rebounds.

The computation took 2.2 h on the same PC with P4

3.0GHz processor and 1GB memory.
6. Conclusions

We have presented a new method for estimating

surface illumination in photon-tracing global illumina-

tion applications. The method improves the standard

orthogonal series estimator in terms of two aspects.

First, the new method determines adaptively and

automatically the appropriate number of terms from

the orthogonal series that should be used for each

surface. Second, to improve accuracy, the new method

adaptively subdivides a surface which has illumination

discontinuity. As a result, to achieve the same
error level, the new method requires shooting fewer

particles, and therefore uses less memory, and runs

faster. These improvements make the orthogonal series

estimator more practical and usable for illumination

computation.

There is still much work to be done for future

research. As shown by the chair in the lower-right

corner of the image in Fig. 15, tiny surfaces may not

receive enough particle hits unless an extremely large

number of particles are shot, which is clearly a

computationally inefficient approach. Hence, an impor-

tant future research problem is to find a functional

representation of the irradiance that depends only on

surface geometry, but is independent of a particular

representation of this geometry, i.e. the underling

mesh size.

There are many kinds of orthogonal basis functions,

such as Fourier series and wavelets, with different

approximation properties. Therefore, another problem

is to study whether any of these basis functions is

most suitable for photon-tracing global illumination

applications.
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Appendix A. 2D orthogonal basis functions

A.1. Basis functions for quadrilateral surfaces

The 1D Legendre polynomials are generated by the

following recursive formulas [29]:

P0ðxÞ ¼ 1,

P1ðxÞ ¼ x,

ðnþ 1ÞPnþ1ðxÞ ¼ ð2nþ 1ÞxPnðxÞ � nPn�1ðxÞ.

The normalized Legendre polynomials are

P�nðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ

1

2

r
PnðxÞ.

A 2D basis fQiðx; yÞg over a quadrilateral domain can be

generated by multiplying two 1D polynomials in

different variables [29]. Therefore, the first six terms in

the 2D Legendre basis are

Q0ðx; yÞ ¼ P�0ðxÞP
�
0ðyÞ; Q3ðx; yÞ ¼ P�2ðxÞP

�
0ðyÞ,

Q1ðx; yÞ ¼ P�1ðxÞP
�
0ðyÞ; Q4ðx; yÞ ¼ P�1ðxÞP

�
1ðyÞ,

Q2ðx; yÞ ¼ P�0ðxÞP
�
1ðyÞ; Q5ðx; yÞ ¼ P�0ðxÞP

�
2ðyÞ

and so on. Fig. 19 shows the graphs of these six terms.

A.2. Basis functions for triangles

The basis functions given in the last section are not

orthogonal over a triangular domain. However, most

modeling packages in the computer graphics industry

tessellate all input primitives into triangles. Hence, it is

of paramount importance to consider how to use

orthogonal series to represent irradiances over a

triangle. In the following we briefly introduce the

method given in [29] for constructing an orthonormal

basis which can be used for triangular domains.
Fig. 19. The first six terms of 2D Legendre bas
The method starts with 1D Jacobi polynomials. With

arbitrary a; b4� 1, 1D Jacobi polynomials are gener-

ated by the following recursive formula:

J
ða;bÞ
0 ðxÞ ¼ 1,

J
ða;bÞ
1 ðxÞ ¼

1
2
½ðaþ bþ 2Þxþ ða� bÞ�,

J
ða;bÞ
nþ1 ðxÞ

¼
ð2nþ aþ bþ 1Þð2nþ aþ bþ 2Þ

2ðnþ 1Þðnþ aþ bþ 1Þ
xJða;bÞn ðxÞ

þ
ð2nþ aþ bþ 1Þða2 � b2Þ

2ðnþ 1Þðnþ aþ bþ 1Þð2nþ aþ bÞ
Jða;bÞn ðxÞ

�
ðnþ aÞðnþ bÞð2nþ aþ bþ 2Þ

ðnþ 1Þðnþ aþ bþ 1Þð2nþ aþ bÞ
J
ða;bÞ
n�1 ðxÞ.

The normalized Jacobi polynomials are

Ĵ
ða;bÞ
n ðxÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðaþ bþ nþ 1Þ!ðaþ bþ 2nþ 1Þ

2aþbþ1ðaþ nÞ!ðbþ nÞ!ðaþ bþ nþ 1Þ

s
J ða;bÞn ðxÞ.

The Jacobi polynomials are orthogonal over the

interval ½�1; 1� with respect to the weight function

ð1� xÞað1þ xÞb. Therefore,Z 1

�1

ð1� xÞað1þ xÞbĴ
ða;bÞ
n ðxÞĴ

ða;bÞ
m ðxÞdx ¼ dn;m.

Note that the Legendre polynomials used in [24] are a

special case of the Jacobi polynomials, with both a and b
set to zero.

Now, with arbitrary a; b; g4� 1, define

An;kðx; yÞ ¼ A
ða;b;gÞ
n;k ðx; yÞ

¼ ð1� xÞkĴ
ð2kþbþgþ1;aÞ
n�k

�ð2x� 1ÞĴ
ðg;bÞ
k

2y

1� x
� 1

� �
.

is functions over a quadrilateral domain.
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Below we show that the polynomials fAn;kðx; yÞg are
orthogonal over the triangular domain T ¼ fðx; yÞ :
0px; yp1; 0pxþ yp1g with respect to the weight

function xaybð1� x� yÞg.

I ¼

Z 1

x¼0

Z 1�x

y¼0

xaybð1� x� yÞgAn;kðx; yÞAm;sðx; yÞdxdy

¼

Z 1

x¼0

ð1� xÞkþsxaĴ
ð2kþbþgþ1;aÞ
n�k

�ð2x� 1ÞĴ
ð2sþbþgþ1;aÞ
m�s ð2x� 1Þ�

�

Z 1�x

y¼0

ybð1� x� yÞgĴ
ðg;bÞ
k

2y

1� x
� 1

� ��

�Ĵ
ðg;bÞ
s

2y

1� x
� 1

� �
dy

�
dx.
Fig. 20. The first six terms of 2D basis po

Fig. 21. Cornell box made up with triangles. From left to right: surfa

image.
Let 2y=ð1� xÞ � 1 ¼ t. Then

I ¼

Z 1

x¼0

ð1� xÞkþsxaĴ
ð2kþbþgþ1;aÞ
n�k

�ð2x� 1ÞĴ
ð2sþbþgþ1;aÞ
m�s ð2x� 1Þ�

�
1� x

2

� �bþgþ1 Z 1

t¼�1

ð1þ tÞbð1� tÞgĴ
ðg;bÞ
k ðtÞ

"

�Ĵ
ðg;bÞ
s ðtÞdt

#
dx.

The term inside the square brackets is zero if kas. When

k ¼ s,

I ¼
1

2bþgþ1

Z 1

x¼0

ð1� xÞ2kþbþgþ1xa�

� Ĵ
ð2kþbþgþ1;aÞ
n�k ð2x� 1ÞĴ

ð2kþbþgþ1;aÞ
m�k ð2x� 1Þdx.
lynomials over a triangular domain.

ces before subdivision, after subdivision, and the final rendered
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Let 2x� 1 ¼ t. Then

I ¼
1

22kþ2gþ2bþaþ3

Z 1

t¼�1

ð1� tÞ2kþbþgþ1
ð1þ tÞa�

� Ĵ
ð2kþbþgþ1;aÞ
n�k ðtÞ; Ĵ

ð2kþbþgþ1;aÞ
m�k ðtÞdt

¼
1

22kþ2gþ2bþaþ3 dn;m. ð9Þ

To simplify computation, we can simply pick a ¼ b ¼
g ¼ 0 so that the weight function becomes 1. Also, from

Eq. (9), we know that An;kðx; yÞ can be normalized by

multiplying the term
ffiffiffiffiffiffiffiffiffiffiffi
22kþ3

p
. As a result, the orthonor-

mal basis polynomials for the triangle T are

Ân;kðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
22kþ3

p
ð1� xÞkĴ

ð2kþ1;0Þ

n�k

�ð2x� 1ÞĴ
ð0;0Þ

k

2y

1� x
� 1

� �
.

Fig. 20 shows the graphs of the first six terms of

Ân;kðx; yÞ. As an illustration, Fig. 21 shows a triangula-

tion of the Cornell box scene and the corresponding

rendered image.
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